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Abstract

The investigation of dynamic systems that incorporate Caputo delta q−fractional derivatives has
garnered significant interest due to their practicality in diverse scientific and engineering fields.
This paper studies the stability of a dynamic system with the Caputo delta q−fractional deriva-
tive using Lyapunov’s direct method. The motivation behind our work stems from the necessity
to comprehend the dynamics and resilience of systems defined by Caputo delta q−fractional
derivatives, which exemplify a category of operators that are both non-local and non-singular.
This unique fractional derivative, which accounts for memory effects and long-range interac-
tions, adds a level of complexity that calls for a thorough study of stability properties. Expand-
ing upon previous scholarly works, we fill a significant research void by presenting a series of
criteria that determine the stability, asymptotic stability, and uniform stability of dynamic sys-
tems with Caputo delta q−fractional derivatives. Through the utilization of Lyapunov’s direct
method, we establish a meticulous framework for examining the stability of these systems, pro-
viding a valuable understanding of their dynamic behavior.

Keywords: stability analysis; Lyapunov’s direct method; asymptotic stability; uniform stability;
delta-fractional derivatives; q−calculus; q−fractional; time scale calculus.
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1 Introduction

The field of fractional calculus encompasses the study of derivatives and integrals of non-
integer order [8]. This particular region has attracted considerable interest owing to its notable
significance in multiple scientific and engineering fields [9]. The concept of q−calculus was in-
troduced by Jackson in the early 20th century. This field of study focuses on the exploration of
calculus principles without the use of limits [11]. The pioneering investigation of q−fractional in-
tegrals and derivatives was carried out by Al-Salam [3] andAgarwal [2] . The area of q−fractional
calculus has garnered considerable interest owing to its capacity to establish a connection between
the principles of fractional calculus [13] and q−calculus [4].

In recent years, scholars have increasingly focused on the temporal dimension inmathematical
modelling, emphasising the application of fractional calculus and q−fractional calculus methods.
These approaches have proven valuable in modelling various biological and physical processes,
including the spread of infectious diseases [7], in-host tuberculosis dynamics [8], Ebola virus
[1], and many other modelling. Such advancements highlight the versatility of fractional and
q−fractionalmethods in addressing complex, real-world systemswithmemory effects and anoma-
lous diffusion behaviours [16]. The motivation for this specific interest stems from the study of
time scale calculus, as demonstrated by the scholarly inquiries conducted by [5, 12]. In addition,
numerous scholars have undertaken research on the integration of time scale and q−fractional
calculus approaches, drawing inspiration from the contributions of Al-Salam [3], Agarwal [2]
and other scholars [14]. The results hold importance in the investigation of fractional calculus in
the time scale represented as Tq := {qϖ : ϖ ∈ Z} ∪ {0}, where 0 < q < 1. Considerable schol-
arly inquiry has been devoted to the analysis and investigation of the Caputo nabla operator. The
examination of the fractional dynamical equation has been conducted by many researchers [15].

There are many advantages of the fractional order derivatives over the classical ones in the
description of many real-world dynamical systems [9]. It was found that a dynamical system
with a classical derivative may not be stable, but that the same systemmay be stable if the classical
derivative is replaced with a fractional derivative. In other words, the region of stability in the
fractional dynamical system is bigger than the region of the corresponding dynamical system. It
turns out that the identical logic still applies to q−fractional difference systems.

The Lyapunov stability criteria are amainmethod to analysis the stability of nonlinear dynam-
ical systems without solving them. Unfortunately, Lyapunov stability criteria cannot be applied
for fractional dynamic systems since they require applying the Leibniz rule, which does not sat-
isfy for the Caputo fractional derivative. This reason has motivated many scholars to introduce a
few algebraic criteria for studying these types of dynamic systems [10]. However, there are some
attempts and results to investigate the stability of fractional dynamic systems by the Lyapunov
direct method [6] and the references therein. According to our good knowledge, there is no study
about the stability of dynamic system with Caputo delta q−fractional derivative. Therefore, this
paper will address this important issue.

2 Preliminaries

This section covers some fundamental q−time scale calculus concepts.
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Let us consider the time scale Tq , where 0 < q < 1.

Tq = {qϖ : ϖ ∈ Z} ∪ {0},

in which Z denotes the set of integers.

This paper presents an explanation of the delta q−derivative concept for the function g : Tq → R.

∆qg(ϖ) =
g(qϖ)− g(ϖ)

(q − 1)ϖ
, ϖ ∈ Tq\{0}. (1)

The higher-order delta q−derivatives may be defined in the following manner:

∆0
qg(ϖ) = g(ϖ), ∆ℓ

qg(ϖ) = ∆q(∆
ℓ−1
q g(ϖ)), (ℓ = 1, 2, 3, . . .). (2)

The expression for the delta q−integral of the function g(ϖ) is provided as follows:

(Iq,0g)(ϖ) =

∫ ϖ

0

g(ω)∆qω = (1− q)

∞∑
ℓ=0

ϖqℓg(ϖqℓ), ϖ ∈ Tq,, (3)

and

(Iq,ag)(ϖ) =

∫ ϖ

a

g(ω)∆qω =

∫ ϖ

0

g(ω)∆qω −
∫ a

0

g(ω)∆qω, a,ϖ ∈ Tq. (4)

The essential delta q−calculus theorem presents,

∆q

∫ ϖ

0

g(ω)∆qω = g(ϖ). (5)

Additionally, in the case where the function g(ϖ) exhibits continuity at zero,∫ ϖ

0

∆qg(ω)∆qω = g(ϖ)− g(0). (6)

The subsequent identities will also prove to be advantageous.

∆q

∫ ϖ

a

g(ϖ,ω)∆qω =

∫ ϖ

a

∆qg(ϖ,ω)∆qω + g(qϖ,ϖ), (7)

and

∆q

∫ b

ϖ

g(ϖ,ω)∆qω =

∫ b

qϖ

∆qg(ϖ,ω)∆qω − g(ϖ,ϖ). (8)

Definition 2.1. The delta q−factorial function for ϑ ∈ N is defined as,

(ϖ − ω)(0)q = 1, (ϖ − ω)(ϑ)q =

ϑ−1∏
r=1

(ϖ − qrω). (9)

Also,

(r − ω)(α)q = ϖα
∞∏
r=0

1− ω
ϖ qr

1− ω
ϖ qr+α

, (10)

where α be a positive real number that is also an integer.
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Definition 2.2. The definition of the delta q−Gamma function is

Γq(γ) = (1− q)(γ−1)
q (1− q)

1−γ
, ∀ γ ∈ C\ {−η, η ∈ N0} , (11)

that fulfills,

Γq(1 + γ) =
1− qγ

1− q
Γq(γ), Γq(1) = 1. (12)

Definition 2.3. The space [e, f ] is defined as the set of all continuous functions that possess continuous
delta q−derivatives up to order ℓ− 1,

C(ℓ)
q [0, f ] =

{
g(ϖ) : ∆η

qg(ϖ) ∈ C[0, f ], ∀ η = 0, 1, . . . , ℓ
}
. (13)

Definition 2.4. Let α > 0, ϖ,ϖ0 ∈ Tq . The fractional delta q−integral for the function g : Tq → R is

I0∆q,ϖ0
g(ϖ) = g(ϖ),

Iα∆q,ϖ0
g(ϖ) =

1

Γq(α)

∫ ϖ

ϖ0

(ϖ − qω)(α−1)
q g(ω)∆qω. (14)

For α1, α2 > 0, then, (
Iα2

∆q,ϖ0
Iα1

∆q,ϖ0
g
)
(ϖ) =

(
Iα1+α2

∆q,ϖ0
g
)
(ϖ), ϖ0 < ϖ. (15)

Lemma 2.1. Assuming γ, δ ∈ R, we obtain

1. (ϖ − ω)
(γ+δ)
q = (ϖ − ω)

(γ)
q (ϖ − qγω)

(δ)
q .

2. (bϖ − bω)
(γ)
q = bγ(ϖ − ω)

(γ)
q .

3. ∆q(ϖ − ω)
(β)
q =

1− qγ

1− q
(ϖ − ω)

(γ−1)
q .

4. ∆q(ϖ − ω)
(γ)
q = −1− qβ

1− q
(ϖ − qω)

(γ−1)
q .

Definition 2.5. Let ϖ,ϖ0 ∈ Tq . The formula representing fractional delta q−derivative in the sense of
Riemann-Lioville for the function g : Tq → R can be expressed as follows:

Dα
∆q,ϖ0

g(ϖ) = ∆η
qI

η−α
∆q,ϖ0

g(ϖ), (16)

such that α ≥ 0 and η = [α] + 1.

For α ∈ R+, 0 < ϖ0 < ϖ. Then,

Dα
∆q,ϖ0

Iα∆q,ϖ0
g(ϖ) = g(ϖ). (17)

Definition 2.6. Let ϖ,ϖ0 ∈ Tq . The formula representing fractional delta q−derivative in the sense of
Caputo for the function g : Tq → R can be expressed as follows:

CDα
∆q,ϖ0

g(ϖ) = Iη−α
∆q,ϖ0

∆η
qg(ϖ), (18)

=
1

Γq(η − α)

∫ ϖ

ϖ0

(ϖ − qω)(η−α−1)
q ∆η

qg(ω)∆qω,

where η = [α] + 1 and α ≥ 0.
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Theorem 2.1. Let 0 < α < 1, we obtain

CDα
∆q,ϖ0

g(ϖ) = Dα
∆q,ϖ0

g(ϖ)−
(ϖ −ϖ0)

−α
q

Γq(1− α)
g(ϖ0).

Lemma 2.2. Let α > 0, and g : Tq → R is defined in appropriate domains. Then,

Iα∆q,ϖ0

CDα
∆q,ϖ0

g(ϖ) = g(ϖ)−
η−1∑
ℓ=0

(ϖ −ϖ0)
(ℓ)
q

Γq(ℓ+ 1)
∆ℓ

qg(ϖ0), (19)

and if 0 < α ≤ 1, then,

Iα∆q,ϖ0

CDα
∆q,ϖ0

g(ϖ) = g(ϖ)− g(ϖ0). (20)

Furthermore, we will employ the subsequent identity:

Iα∆q,ϖ0
(x−ϖ0)

υ
q =

Γq(υ + 1)

Γq(α+ υ + 1)
(x−ϖ0)

υ+α
q , 0 < ϖ0 < x < ϖ, (21)

where α ∈ R+ and υ ∈ (−1,∞).

3 Main Results

On time scale, the direct method of Lyapunov will adopted in this section to investigate the
stability of dynamic system with Caputo delta q−fractional derivative.

CDα
∆q,ϖ0

ξ(ϖ) = g(ϖ, ξ(ϖ)),

ξ(ϖ0) = ξ0, (22)

where g : Tq × Rn → Rn is continuous, α ∈ (0, 1), ϖ ≥ ϖ0, and ϖ0 ∈ Tq .

For all ϖ ∈ Tq , let g(ϖ, 0) = 0, as a result, the system (22) approves the trivial solution. In
studying the system’s properties (22), the following are listed:

Definition 3.1. The stationary point of (22), ξ(ϖ) = 0, is defined as,

1. Stable if γ = γ(ε,ϖ0) > 0 exists for each ε > 0 and ϖ0 ∈ Tq such that if ∥ξ0∥ < γ we have
∥ξ(ϖ)∥ < ε, for all ϖ ∈ Tq , ϖ ≥ ϖ0.

2. Uniformly stable if it is stable and γ depends only on ε.

3. asymptotically stable, if it is stable and there exists γ = γ(ϖ0) > 0, such that if ∥ξ0∥ < γ implies
that lim

ϖ→∞
ξ(ϖ,ϖ0, ξ0) = 0.

Definition 3.2. The function Ξ(ℓ) is referred to as being of class K iff Ξ ∈ C [[0, η),R+], where η ∈ R+,
Ξ(0) = 0 and Ξ(ℓ) increases strictly monotonically in ℓ.

Definition 3.3. The scalar function V (ϖ,ξ) : Tq × Sη → R, where Sη = {ξ ∈ Rn : ∥ξ∥ < η}, is called
to be positive definite iff,

V (ϖ, 0) = 0, ∀ϖ ∈ Tq,

and Ξ(ℓ) ∈ K such that,

Ξ(ℓ) ≤ V (ϖ, ξ), ∥ξ∥ = ℓ, ∀ (ϖ, ξ) ∈ Tq × Sη.

779



N. K. Mahdi and A. R. Khudair Malaysian J. Math. Sci. 18(4): 775–783(2024) 775 - 783

Definition 3.4. A scalar function V (ϖ,ξ) : Tq × Sη → R, where Sη = {ξ ∈ Rn : ∥ξ∥ < η}, is called
decreasing function iff,

V (ϖ, 0) = 0, ∀ϖ ∈ Tq,

and Ξ(ℓ) ∈ K such that,

V (ϖ, ξ) ≤ Ξ(ℓ), ∥ξ∥ = ℓ, ∀ (ϖ, ξ) ∈ Tq × Sη.

Now, the stability of system (22) will be discussed in the following theorems,

Theorem 3.1. The stationary point of (22) is stable, if there is a positive definite scalar function,
V (ϖ, ξ) ∈ C[Tq × Sη,R+], where

CDα
∆q,ϖ0

V (ϖ, ξ(ϖ)) ≤ 0, ∀ (ϖ, ξ) ∈ Tq × Sη.

Proof. Let ξ(ϖ) = ξ(ϖ,ϖ0, ξ0) be the system’s solution (22). Due to V (ϖ, ξ) being a positive
definite, there exists a function Ξ ∈ K such that,

Ξ(∥ξ∥) ≤ V (ϖ, ξ), ∀ (ϖ, ξ) ∈ Tq × Sη.

For any 0 < ε < η, ε > 0, one may choose a γ = γ(ϖ0, ε) such that,

∥ξ∥ < γ ⇒ V (ϖ0, ξ0) < Ξ(ε).

This choice is possible since V (ϖ0, 0) = 0 and V (t0, ξ) is continuous in ξ.

For each solution to (22), since CDα
∆q,ϖ0

V (ϖ, ξ(ϖ)) ≤ 0, and (20), we have

V (ϖ, ξ(ϖ)) ≤ V (ϖ0, ξ0), ∀ϖ ≥ ϖ0.

As a result, we get

Ξ(∥ξ(ϖ)∥) ≤ V (ϖ, ξ(ϖ)) ≤ V (ϖ0, ξ0) < Ξ(ε).

Since Ξ ∈ K, we obtain

∥ξ(ϖ)∥ < ε, ∀ϖ ≥ ϖ0.

Theorem 3.2. The stationary point of (22) is uniformly stable, if a decreasing function and positive definite
V (ϖ, ξ) ∈ C[Tq × Sη,R+] exists such that,

CDα
∆q,ϖ0

V (ϖ, ξ(ϖ)) ≤ 0, ∀(ϖ, ξ) ∈ Tq × Sη.

Proof. Let ξ(ϖ) = ξ(ϖ,ϖ0, ξ0) be a solution of system (22). Since V (ϖ, ξ) is decreasing function
and positive definite, there exists Ξ,Ψ ∈ K such that,

Ξ(∥ξ∥) ≤ V (ϖ, ξ) ≤ Ψ(∥ξ∥), ∀(ϖ, ξ) ∈ Tq × Sη.

For each 0 < ε < η, ε > 0, one may choose a γ = γ(ε) such thatΨ(γ) < Ξ(ε). SinceΨ is continuous
and Ψ(0) = 0, this choice is possible.
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For any solution to (22), we get

Ξ(∥ξ(ϖ)∥) ≤ V (ϖ, ξ(ϖ)),

with ∥ξ0∥ < γ(ε).

Using (20), and since CDα
∆q,ϖ0

V (ϖ, ξ(ϖ)) ≤ 0, we get

V (ϖ, ξ(ϖ)) ≤ V (ϖ0, ξ0), ∀ϖ ∈ Tq.

Consequently, we have

Ξ(∥ξ(ϖ)∥) ≤ V (ϖ, ξ(ϖ)) ≤ V (ϖ0, ξ0) ≤ Ξ(∥ξ0∥) < Ψ(γ) < Ξ(ε),

and thus ∥ξ(ϖ)∥ < ε, at all t ≥ ϖ0, t ∈ Tq .

Theorem 3.3. The stationary point of (22) is asymptotically stable, if there is a positive definite function
V (ϖ, ξ) ∈ C[Tq × Sη,R+] where

CDα
∆q,ϖ0

V (ϖ, ξ(ϖ)) ≤ −φ(V (ϖ, ξ(ϖ))), ∀ (ϖ, ξ) ∈ Tq × Sη, ϖ ≥ ϖ
0
,

for all φ ∈ K.

Proof. Clearly, Theorem 3.2 are fulfilled, and the stationary point of (22) is stable.

Since

CDα
∆q,ϖ0

V (ϖ, ξ(ϖ)) ≤ −φ(V (ϖ, ξ)), ∀ (ϖ, ξ) ∈ Tq × Sη.

Using (20), we get
V (ϖ, ξ) ≤ (V (ϖ0, ξ0)), ∀ (ϖ, ξ) ∈ Tq × Sη.

As a result, V (ϖ, ξ(ϖ)) is decreasing, and V0 = lim
ϖ→∞

V (ϖ, ξ) exists.

Currently, we assert V0 = 0. If that is not the case, since V (ϖ, ξ) ≥ V0, we get

φ(V (ϖ, ξ)) ≥ φ(V0).

Consequently, −φ(V (ϖ, ξ)) < −φ(V0). As a result, we get

CDα
∆q,ϖ0

(V (ϖ, ξ)) ≤ −φ(V0).

By using (20) and (21) with υ = 0, we have

V (ϖ, ξ(ϖ)) ≤ V (ϖ0, ξ0)− φ(V0)
(ϖ −ϖ0)

α
q

Γq(α+ 1)
.

Therefore, because lim
ϖ→∞

(ϖ − ϖ0)
α
q = ∞, we get lim

t→∞
V (ϖ, ξ) = −∞, which is in opposition to

the hypothesis that V (ϖ, ξ) is a positive definite.

Therefore, we get

lim
ϖ→∞

V (ϖ, ξ) = V0 = 0.

As a result, lim
ϖ→∞

Ξ(∥ξ(ϖ)∥) = 0, and thus, lim
ϖ→∞

Ξ(∥ξ(ϖ)∥) = 0.
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Lemma 3.1. If V (ϖ0, ξ(ϖ0)) ≥ 0, then for 0 < α ≤ 1, we have

CDα
∆q,ϖ0

V (ϖ, ξ(ϖ)) ≤ Dα
∆q,ϖ0

V (ϖ, ξ(ϖ)), ∀ϖ ≥ ϖ0.

Proof. Using Theorem 2.1, we get

CDα
∆q,ϖ0

V (ϖ, ξ(ϖ)) = Dα
∆q,ϖ0

V (ϖ, ξ(ϖ))−
(ϖ −ϖ0)

−α
q

Γq(1− α)
V (ϖ0, ξ(ϖ0)),∀ϖ ∈ Tq, ϖ ≥ ϖ0.

Since V (ϖ0, ξ(ϖ0)) and
(ϖ −ϖ0)

−α
q

Γq(1− α)
≥ 0, so the result is satisfied.

Theorem 3.4. Suppose that,

1. If the assumption in Theorem 3.2 is fulfilled by substituting CDα
∆q,ϖ0

withDα
∆q,ϖ0

, then the station-
ary point of (22) is stable.

2. If the assumption in Theorem 3.3 is fulfilled by substituting CDα
∆q,ϖ0

withDα
∆q,ϖ0

, then the station-
ary point of (22) is uniformly stable.

3. If the assumption in Theorem 3.4 is fulfilled by substituting CDα
∆q,ϖ0

withDα
∆q,ϖ0

, then the station-
ary point of (22) is asymptotically stable.

Proof. By using Lemma 3.1 and repeating the same justifications as in the proofs of Theorems 3.2
– 3.4, the proof is complete.

4 Conclusions

The utilization of the Lyapunov sense of stability is observed in diverse fields of scientific in-
vestigation and engineering application. The objective of this study is to examine the stability of
a dynamic system that incorporates the Caputo delta q−fractional derivative. To achieve this, the
Lyapunov’s direct method is employed. Furthermore, the paper explores the analysis of stability
conditions, asymptotic stability, and uniform stability in relation to these systems.
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